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Outline for Today
● Walks, Paths, and Reachability

● Walking around a graph.
● Application: Local Area Networks

● Graphs meet computer networking.
● Trees

● A fundamental class of graphs.



  

Recap from Last Time



  

Graphs and Digraphs
● A graph is a pair G = (V, E) of a set of 

nodes V and set of edges E.
● Nodes can be anything.
● Edges are unordered pairs of nodes. If 

{u, v} ∈ E, then there’s an edge from u to v.
● A digraph is a pair G = (V, E) of a set of 

nodes V and set of directed edges E.
● Each edge is represented as the ordered pair 

(u, v) indicating an edge from u to v.
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Two nodes in an undirected graph are called
adjacent if there is an edge between them.
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Using our Formalisms
● Let G = (V, E) be an (undirected) graph.
● Intuitively, two nodes are adjacent if they're 

linked by an edge.
● Formally speaking, we say that two nodes 

u, v ∈ V are adjacent if we have {u, v} ∈ E.
● There isn’t an analogous notion for directed 

graphs. We usually just say “there’s an edge 
from u to v” as a way of reading (u, v) ∈ E 
aloud.



  

New Stuff!



  

Walks, Paths, and Reachability
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A walk in a graph G = (V, E) is 
a sequence of one or more 
nodes v₁, v₂, v₃, …, vₙ such that 
any two consecutive nodes in 
the sequence are adjacent.
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(This walk has 
length 10, but 
visits 11 cities.)
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Fun Facts
● Here’s a collection of useful facts about graphs that you can 

take as a given.
● Theorem: If G = (V, E) is a (directed or undirected) graph and 

u, v ∈ V, then there is a path from u to v if and only if there’s a walk 
from u to v.

● Theorem: If G is an undirected graph and C is a cycle in G, then C’s 
length is at least three and C contains at least three nodes.

● Theorem: If G = (V, E) is an undirected graph, then every node in V 
belongs to exactly one connected component of G.

● Theorem: If G = (V, E) is a (directed or undirected) graph and u, y₀, 
y₁, …, yₘ, v is a walk from u to v and v, z₀, z₁, …, zₙ, x is a walk from v 
to x, then u, y₀, y₁, …, yₘ, v, z₀, z₁, …, zₙ, x is a walk from u to x.

● Looking for more practice working with formal definitions? 
Prove these results!



  

Time-Out for Announcements!



  

0 – 41 42 – 45 46 – 49 50 – 53 54 – 57 58 – 61 62 – 65 66 – 69 70 – 73

Problem Set Two Graded

75th Percentile: 69 / 73 (95%)
50th Percentile: 67 / 73 (92%)
25th Percentile: 65 / 73 (89%)



  

Midterm Exam Logistics
● Our first midterm exam is next Monday, October 20th 

from 7:00PM – 10:00PM.
● Seating assignments are available. Write your seat 

number down in case the WiFi cuts out before the exam.
● You’re responsible for Lectures 00 – 05 and topics 

covered in PS1 – PS2.
● Later lectures (functions forward) and problem sets (PS3 

onward) won’t be tested here.
● Exam problems may build on the written or coding 

components from the problem sets.
● The exam is closed-book, closed-computer, and limited-

note. You can bring a double-sided, 8.5” × 11” sheet of 
notes with you to the exam, decorated however you’d 
like.

https://web.stanford.edu/class/cs103/cgi-bin/midterm1-seating/


  

Preparing for the Exam
● Your amazing CA Ari is holding a review 

session this Friday from 3PM – 4PM in 
CoDa E160.

● Make sure to review your feedback on 
PS1 and PS2.
● “Make new mistakes.”
● Come talk to us if you have questions!

● There’s a huge bank of practice problems 
up on the course website.

● Best of luck – you can do this!



  

Participation Opt-Out
● By default, all on-campus students have 

5% of their grade allocated from lecture 
attendance and participation.

● If you are an on-campus student and 
want to opt out, shifting that 5% onto 
your final exam, fill out the opt-out 
form on Ed by Friday at 11:59 PM.



  

Back to CS103!



  

Application: Local Area Networks



  

The Internet and LANs
● The internet consists of several separate local 

area networks (LANs) that are 
“internetworked” together.

● Local area networks cover small areas – a 
single hallway in a dorm, an office building, a 
college campus, etc.

● The internet then links those smaller LANs into 
one giant network where everyone can talk to 
everyone.

● Focus for today: How do messages flow 
through a LAN?



  



  



  



  

Message Movement
● When a computer 

receives a message, it 
repeats that message 
on all its links except 
the one it received 
the message on.

● The computers don’t 
inspect the message 
contents or try to be 
clever – it’s purely 
“came in on link X, 
goes out on all links 
but X.”



  



  



  

Two Pitfalls



  

The network graph
must be connected.



  

What will happen if this computer sends a
message through the network?

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  



  



  



  



  



  

Broadcast Storms
● A broadcast storm occurs when there’s 

a cycle in the network graph.
● A single message can repeat forever, or 

exponentially amplify until the network 
fails.

● Solution: Don’t let the network graph 
have any cycles.

● A graph G = (V, E) is called acyclic if it 
has no cycles.



  

You have a collection of computers
that need to be wired up into a LAN.
How should you choose the shape of

the network?
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Fewest Links,
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Most Links,
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three!
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Connected
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? ? ?



  

Connected, Acyclic

Minimally Connected

(Connected, but deleting
any edge disconnects

its endpoints.)

$

Maximally Acyclic

(Acyclic, but adding
any missing edge
creates a cycle.)

If any of these
conditions hold,
then all of these
conditions hold.

A graph with any
of these properties

is called a tree.
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Theorem: Let T = (V, E) be a graph. If T is connected and
acyclic, then T is maximally acyclic.

Proof: Assume T is connected and has no cycles. We need to
prove that T is maximally acyclic. We already know that T
is acyclic. So choose any nodes x, y ∈ V where {x, y} ∉ E;
we’ll prove that adding {x, y} to E closes a cycle.
Because T is connected, there is a path x, …, y from x to y 
in T. Now add {x, y} to E. Then we can form the closed 
walk x, …, y, x. We claim that this is a cycle. To see this, 
note the following:

No node is repeated except the start/end node x: nodes 
x, …, y are all distinct because x, …, y is a path.
No edge appears twice: none of the edges used in
x, …, y are repeated (x, …, y is a path). Furthermore, 
the edge {x, y} isn’t repeated since the path x, …, y 
was formed before {x, y} was added to E.

Thus adding {x, y} to E closes a cycle, as required. ■
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What do we know about x and y
given that T is connected?

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev
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Check the appendix for the
other two steps of the proof.



  

More to Explore
● A tree kind of seems like a bad way to design a 

network. (Why?)
● Actual local area networks allow for cycles. They 

use something called the spanning tree protocol 
(STP) to selectively disable links to form a tree.

● Routing through the full internet – not just within 
a LAN – is a fascinating topic in its own right.

● Take CS144 (networking) for details!
● If we have time, we’ll explore more on network 

routing later in the quarter.



  

Recap from Today
● Walks and closed walks represent ways 

of moving around a graph. Paths and 
cycles are “redundancy-free” walks and 
cycles.

● Trees are graphs that are connected and 
acyclic. They’re also minimally-connected 
graphs and maximally-acyclic graphs.

● Trees have applications throughout CS, 
including networking.



  

Next Time
● The Pigeonhole Principle

● A simple, powerful, versatile theorem.
● Graph Theory Party Tricks

● Applying math to graphs of people!
● A Little Movie Puzzle

● Who watched what?



  

Appendix



  

Maximally Acyclic

(Acyclic, but adding
any missing edge
creates a cycle.)

Connected, Acyclic

Minimally Connected

(Connected, but deleting
any edge disconnects

its endpoints.)

$



  

Theorem: Let T = (V, E) be a graph. If T is minimally
connected, then T is connected and acyclic.

Proof: Assume T is minimally connected. We need to show that 
T is connected and acyclic. Since T is minimally connected,
it’s connected, and so we just need to show that T is acyclic.
Suppose for the sake of contradiction that T contains a cycle 
x, …, y, x. Note in particular that this means x, …, y is a path 
in T and that this path does not use the edge {x, y}.
Since T is minimally connected, deleting the edge {x, y} 
from T makes y not reachable from x. However, we said 
earlier that x, …, y is a path from x to y in T that does not 
use {x, y}, so x and y remain reachable after deleting {x, y}.
We have reached a contradiction, so our assumption was 
wrong and T is acyclic. ■
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Connected, Acyclic

Minimally Connected

(Connected, but deleting
any edge disconnects

its endpoints.)

$

Maximally Acyclic

(Acyclic, but adding
any missing edge
creates a cycle.)



  

Theorem: Let T = (V, E) be a graph. If T is maximally acyclic,
then T is minimally connected.

Proof: Assume T is maximally acyclic. We need to prove that
T is minimally connected. To do so, we first prove T is
connected. Pick any x, y ∈ V where x ≠ y; we’ll show there’s
a path from x to y. Consider two cases:

Case 1: {x, y} ∈ E. Then x, y is a path from x to y.
Case 2: {x, y} ∉ E. Imagine adding {x, y} to E. Since T is 
maximally acyclic, this closes a cycle x, …, y, x passing 
through {x, y}. Then x, …, y is a path in T from x to y.

In either case, we have a path from x to y, as needed.
Next, suppose for the sake of contradiction that there is an 
edge {x, y} ∈ E where T remains connected after deleting 
{x, y}. This means that there is a path x, …, y in T after 
removing {x, y}. By adding {x, y} to the end of the path, we 
form a cycle x, …, y, x is a cycle in T. This is impossible 
because T is acyclic. We’ve reached a contradiction, so our 
assumption was wrong and T is minimally connected. ■
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